Code: 20ME4703B

IV B.Tech - I Semester – Regular / Supplementary Examinations OCTOBER 2024

ADDITIVE MANUFACTURING (MECHANICAL ENGINEERING)

Duration: 3 hours

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

Max. Marks: 70

			BL	СО	Max.			
					Marks			
	UNIT-I							
1	a)	Compare and explain the differences	L1	CO1	7 M			
		between CNC and Additive Manufacturing						
		process.						
	b)	Explain the advantages, disadvantages and	L2	CO1	7 M			
		application of Additive Manufacturing						
		process.						
OR								
2	a)	Discuss in detail steps in AM process.	L2	CO1	7 M			
	b)	Explain the classifications of AM Processes	L2	CO1	7 M			
UNIT-II								
3	a)	Explain with a neat sketch the working	L1	CO1	7 M			
		principle of Stereo - lithography (SLA)						
		process.						
	b)	Explain the advantages and disadvantages	L2	CO2	7 M			
		of Stereo - lithography (SLA) process.						
	Page 1 of 3							

		OR			
4	a)	Discuss with a neat sketch the working principle of Vat Photo polymerization AM process	L2	CO1	7 M
	b)	Describe with a neat sketch the working principle of Mask Projection process with advantages and disadvantages.	L2	CO2	7 M
		UNIT-III			
5	a)	Illustrate the sequential steps involved in LOM process.	L1	CO3	7 M
	b)	Discuss the advantages, disadvantages and applications of FDM process.	L2	CO3	7 M
		OR			
6	a)	With a neat sketch discuss the working principle of Extrusion-Based AM Processes.	L2	CO3	7 M
	b)	Explain the advantages, disadvantages and applications of sheet Lamination AM Processes	L2	CO3	7 M
		UNIT-IV			
7	a)	Explain with a neat sketch the working principle of Electron Beam melting (EBM) in powder Bed fusion AM process.	L3	CO4	7 M
	b)		L3	CO4	7 M
	1	OR		<u>ı </u>	

	\ \		T O	0.01	7) (
8	a)	List out the materials used in Powder Bed	L3	CO1	7 M			
		Fusion Processes.						
	b)	How does the fusion mechanism differ	L3	CO4	7 M			
		when using ceramics in SLS compared to						
		metals?						
				· · · · · ·				
		UNIT-V						
9	a)	With a neat sketch discuss the working	L3	CO4	7 M			
		principle of Electron Beam Based Metal						
		Deposition.						
	b)	Discuss the Processing-structure-properties	L3	CO4	7 M			
		of Directed Energy Deposition process.						
OR								
10	a)	Illustrate the working principle of Directed	L3	CO4	7 M			
		Energy Deposition process.						
	b)	How does the directed energy source, such	L3	CO4	7 M			
		as a laser or electron beam contribute to						
		DED?						